(matching) terms common to both. In view of the definition of L*, these

composite solutions are thus, to first order,

<}
"

1 +¢ (f{'yih,x + L**) +oeee (33a)
X

v =€ f,'+e3/z(yol)‘/zg**+--- (33b)
¥

where h,, is given by equation (13b) with the plus sign, and L* = 0 upstream
of the shock, x < Xg. Also, for x < Xy if the flow accelerates from sub-
sonic to supersonic flow (with the sonic line passing through (0,0)), then

the upper sign is taken in equation (33a); if the flow is supersonic decelerating
flow for x < 0 and accelerates for x > 0 with possibly a subsonic pocket in the
region about x = 0, then the lower sign is taken for x < 0 and the upper for
x>0, Farx?> Xg» only the lower sign in equation (33a) is taken. It should
be noted that for x ¥ = C{l) equations (33) reduce to the inner solutions down-
stream of the shock, while as x* = o ; L* - () and the outer solutions, to
order € , are recovered,

Solutions for the pressure and density are written in terms of the
solutions for the velocity components through equations derived from the
conservation equations and the equation for the jump in entropy across the
shock wave. Thus, from the inviscid energy equation, it can be showr17 that

the stagnation or total enthalpy can be written as,

A
T 1 2 2 Y+l 3
2 1 - 34a)
h, Y-1+2(“ + ve) Zv-1) € hy, + (34a
de %* %"
htl = k rry (Lx* - 2h, (%)) x >® (34b)
= < 34
htx 0 X xS (34c¢)

where h (x,) is calculated from equation (13b) with the plus sign. The
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pressure and density are related to the entropy and the temperature as

follows:

(s-sy)(Y-1)

N
P/pY - e P=pT (35a,b)

The entropy change of importance is that across the shock wave, the
gradients downstream of the shock being of high enough order that they are
negligible. For transonic flow, across a shock

e N i 5ok
8, =6, = qle il 1f - ol mE -t e e (36)

where, since the shock in this case is in motion, M_ is the relative normal

u
Mach number of the incoming flow. For a shock described by equation (26),

ox
MZ2-1=¢e(y+1)lu -(a—‘)zl (37)
y

u ua

where, as mentioned earlier, outer solutions are valid upstream of the shock
wave. The expansions for P and p can then be found from equations (34a)

and (35), where u and v are found from equations (4) and (8) with = W and

v = ¢iy' Thus,
P=1-eYu -€Yv/2+w) - v{2 (y+1)[ulu-(3x,/3y)zl3/3

-htl-(Y+l)ul3/6-u1vlz/2+v,vz+u3}+--- (38a)

p=1-eu-el(Y-Dul/2+vi/2tu]-El2vv+1)u - (@x/8y)*P/3
- b =Y (@2-Y)uP/3 (Y- uup - (2-Y)uy viE/2
+vyvatush+ - .. (38b)
If the composite solutions are used for u; and v, (terms of order € in equations
(33)), then equations (38) give solutions which are uniformly valid to order €.

A solution for ‘f‘ similar to those given for P and p is easily derived from

equation (34a).
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It should be noted that, if composite solutions are considered, then
immediately upstream of the shock wave, Py =-€Y fl'o', while downstream

of the wave, P_ = - €Y (f" + L* )+ .-+ . Thus, downstream of the wave,
y 10 x*y*

if the wave is approached by first going to y*= 11, and then going to x¥=x,,

then at the wave Py =-€Y f"o' . However, if the wave is approached by going
to x*= x; first, at any y*, and then traveling along the wave toward y¥=11,
Py =€ Yf"o' + -+ . That is, from equations (31c) and (3le), 9x,/0y = 0 at

y = + 1; hence, from equation (31b), l_,* = - Zfllo' aty =+ 1. Thus, there

x ¥y *
is a change of sign in Py across the shock, and since PY oc v:{*, the stream-
line curvature, this means that downstream of the shock wave, the limiting
value of vli* at the intersection of the shock wave and the walls depends on

the path of approach to the intersection. This singularity in the solution is

similar to that analyzed by Messiter and Adamson.

SHOCK WAVE LOCATION
The unsteady perturbations in flow velocity and thermodynamic
properties in the channel can be caused, for example, by pressure distur-
bances in a plenum downstream of the shock wave. Here, we consider the
case where the disturbances have a characteristic time (inverse of
characteristic frequency) of order €-2, and an amplitude of order €?. As
will be seen, this is sufficient to give shock motions with an amplitude of

order unity.

Since only terms of order €t in P may vary with time, it is seen

from equations (38a) that u; is independent of time; hence, h, = h, (x). In
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fact, (equations (38a) and (15)) the time dependence first appears in u,,
through h, = h, (x.t). As a result, in equation (13b), B, is a constant, and
the time dependence of h, and thus u, and indeed ¢, is through B, (t). Both
B, and B, may have different values upstream and downstream of the shock
wave. Since the time enters the solutions for u only through the integration
function, B,, then to order €?, the unsteady motion may be pictured as a
sequence of steady state solutions for u, each with different downstream
conditions. The velocity component v, to order €%, is totally time indepen-
dent, (equation (15b)). From equations (38a), (15), and (ﬁ), it is seen
that specifying the second order variation in pressure at a downstream
plenum location, is equivalent to setting 3, (t) downstream of the shock,

say Bzd' The fact that time does not appear explicitly in the solutions valid
downstream of the shock wave (e.g., see the composite solutions given in
equations (33)) and appears only as a parameter, inf3,, is due to the fact
that the disturbances travel upstream at a speed of order € while the shock
moves at a velocity of order €%, and indeed, the order of the unsteady part
of the fluid velocity is €?. Thus, the disturbances travel upstream
"instantaneously'' compared with the characteristic times under study.

It should be noted, however, that as a result of the motion of the shock

(i.e., since x = x(t)) the first order pressure, velocity, etc., in the range

0
of motion of the shock, do change as the shock moves back and forth; they
jump between the steady state values upstream and downstream of a shock
wave at the point in question.

The equation from which the instantaneous shock wave location can

be calculated is derived from the principle of mass conservation applied

. 4
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to a control volume enclosing the shock wave. Thus, one surface of the
control volume, the sides of which are the channel walls, is located at x =0,
the throat, and the other is at x :XC, somewhere downstream of the shock.

Then

f dexdy}— fl pudy + [ ¥ € pudy = 0 (39)

where y:v and y:N denote, respectively, the upper and lower walls. The
integral in the first bracket, from zero to XC, is evaluated in two parts,

one upstream of the wave (0 to xs) and one downstream of the wave (xs to Xr)
with the composite solutions used for u; in the first order terms of equation
(38b). Since d/dT = O(e?) and only terms up to third order are desired,

only the first order term in p is necessary. In the remaining integrals at

x =0 and x =XC, equations (15) and (38b) are used. First order terms are

identically zero, and from the second and third order terms, one finds that

Ba=8a=h (40a)

= ix—"-(% h' = 2Y((£) + (' ')?)/3+G 40t

(Y+1) dt Pau = Pag)hyy = 2YUHEG)F + (b, )" )/3 4 (%) (40b)
s o Sl L

G(xo)-h.lo {l(ay) [ulu ) - w (xo)(ay) +3 (By)]dy (40¢)

where hx'o = dh,/dx evaluated at x  and Bzu is a constant,while B,  is a function
of time for the case under consideration where disturbances are imposed
downstream of the shock wave. If the shock wave has a higher order curva-
ture, 9x /9y = 0, and G (x,) vanishes; then equation (40b) is reduced to a form

equivalent to that given by Richey and Adamson.
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Equation (40b) may be used in determining the shock location,
X, = constant, for a flow which is steady with a stationary shock wave. Thus,
for a given (now constant) pzd which is equivalent to a given pressure in a
plenum downstream of the shock wave, the only unknowns in equation (40b),
h"o and G (xo), are functions of X Since 9x,/dy, which depends on X, as well
as y as seen from equations (31), must be known if G (xo) is to be calculated,
this means that equations (31) and (40) must be solved simultaneously. In

principle, therefore, x  may be calculated for a given B,;. However, it is

0

much easier to choose a given x_, solve equations (31) and in the process

0
find x, , calculate G (xo) and hl'o, and then use equation (40b) to calculate the
Bzd which corresponds to the chosen X, after a series of such calculations,
x, may be plotted as a function of ,5. If the downstream pressure varies

with time in a pr sc "ibed manner, then ﬁzd = ﬁzd (t) is known and dx /dt and
thus the shock velocity may in principle be calculated from equations (31)

and (40b), with the shock position, xo(t), being found then by integration of

dxo/dt. The computations may be carried out by first solving equations (31)

for a sequence of values for X, SO that 9x,/d8y, h'

e and thus G (xo) are

essentially known as functions of Xge With ﬁzd(t) and the initial value of X,
known, equation (40b) may then be integrated numerically, thus relating x,
to ¢t; i.e. ; xo(t) is obtained. Finally, with X,(t) known, L* and 9x,/dy, and

thus u, P, p, x;, etc., may be obtained as functions of time at any space point.

NUMERICAL CALCULATIONS

In the present work, equations (31) were solved using the method of

integral relations proposed by Dorodnitsyn. Details of the computation




are available in reference 7, so only a brief description is given here. The

inner region in which equations (31) are valid is composed of a region extend-

ing from y*=-1 to y¥=+1 in the y* direction and from the curve x*= xs* to

x* =+ 0 in the x* direction; xs* =x, +--- is to be found as part of the solution.

. Ly 5 S : S -x*
This region is transformed into a finite region by the transformation x = e /

3
A -X
Xx =e 9,is divided into N

A A
and this finite region, between x = 0 and x = ;

strips. Calculations of the shock shape made with N=2 and compared with
the calculation made with N = 3 showed very little difference, indicating that
relatively accurate computations can be made with two strips. Equation (3la),
written in terms of velocity components, and the corresponding irrotationality
x*

condition, u " , = Vv *
1y

ik are the governing equations integrated across each

AN
strip, using Nth grder polynomials in x/xS for interpolation expressions for

% ¢ ] ) lim S -
u,” and v,". In the present case, it was found that if w (’x* = 0 is used

X -

as a boundary condition and the method of integral relations applied, then

3
{,;* is not zero as x* =+ w. That is, apparently due to the approximations
inherent in the method and the effects of the singularity at the shock-wall
interaction, there is an error in the v velocity as x® = . Rather than accept

* » o was enforced and the irrotationality

this error, the condition L;‘* -0 as x
condition was integrated once across the whole region rather than across
each of the two strips separately.

Using the two strip method, one finds a nonlinear differential
equation for the shock shape; since time enters only as a parameter,

this equation may be treated as an ordinary differential equation. Thus, if

z(y) = 9x,/9y, one finds that

i da et i e
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(foy + hy - 322" - [622' - 2 Ra + fih)y (1-y?) - 2£3] 2
-[2R?2+ Bh/y+ 26y)R - 264 bt y]z

- Lengetl -y?) + 3£HIR-2£%y - £4h5 =0 (41a)

R = [E]02y2+ flbhloy + (P + 100, (1 -y¥)z - £z
- (fy + hiy - 322)z']'2 (41b)
where hy, = hl'(xo), etc. The boundary conditions for equations (44) are
Zeee 1) = 0 (42)

Equation (4la) was solved numerically using a fourth-order Runge-Kutta
method, yielding z(y). Then z(y) = 0x,/dy was integrated, using the con-
dition that x,(-1) = 0, to give the shock shape, x;. Since both f;jl and h/,
are time dependent, because x; = x,(t), the coefficients in equations (41)
have different values at different times and it is seen that the shock shape
varies with time.

The wall shapes chosen for the calculations are as follows:

y, =4l+e x2/2 + €21 + 20 (Y+1)/9] x%/2 (43)
where the wall shape functions, f;(x) and f,(x) are found by comparing
equations (7) and (43). In order to make the calculations as simple as
possible, x,(t) is prescribed here and the corresponding Bzd (and thus
pressure in the downstream plenum) is calculated from equations (40b)
and (40c). That is, one can prescribe f}zd(t) and find the resulting x,(t),
or prescribe x,(t) and find the necessaryf_,(t). The latter problem
demands less comiputing time and is used here for illustration. Thus,

we set
xo(t) = 1,5 4 (sint)/2 (44)
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and perform calculations for Y = 1.4, € = 0.1, and ﬁzu = 0. The wall shapes
given by equations (43) with these values for € and Y, are those seen in
figures 2 to 4.

Velocity profiles showing the first order inner solutions downstream
of the shock wave are shown at x ¥ = x, in figure 5a, and at %t = x; + 0.69 in
figure 5b, each at three different times, t = %, m, and % The corresponding
X, is found from equation (44). These figures thus illustrate the temporal
variations in the velocity components at the indicated inner region stations.
The relatively large spatial variations which occur in the inner region at a
given time, are illustrated in figure 6, at t = 0. The change in u,* from its
values immediately behind the shock to the linear profile associated with
subsonic flow for the given wall shapes, is indicative of the large accelera-
tions and decelerations which take place in the inner region.

The shock shape, Xy = X, + el/z (Y + 1)1/z X, + ..., is shown in figure 7,
as a function of time. It is seen that as a result of the curvature of the walls
and the attendant gradients in the incoming flow, the shock wave has a pro-
nounced curvature; for the direction of curvature chosen for the walls, the
shock starts normal to the lower wall, inclines in the flow direction and then
turns back toward the upper wall so as to become normal to it also. As the
shock moves closer to the throat of the channel, it becomes weaker and has
more curvature.

The values of X for each time at which calculations were made, the
correpsonding Bzd(t) calculated from equation (40b), and the equivalent change

in back pressure at a downstream plenum from its value at t=0, APb = Pb(t) -

Pb(O), are given in table 1. Finally, the pressure on the upper and lower
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walls at these same times, to order €, are shown in figure 8. In this figure,
the solid lines indicate the calculated pressure distributions upstream of the
shock wave, the pressure jump across the shock, and outer pressure distri-
butions downstream of the shock. The large dots indicate the pressures
calculated in the inner region, and the dashed lines show a curve drawn
through these points and faired into the outer pressure distribution, to show
an approximate pressure distribution. Since only two strips were used in the
inner region computations, only one data point within the inner region is

available.

CONCLUSIONS
The methods used in this study enable one to study unsteady flows

with shock waves in relatively highly curved asymmetric channels with
arbitrary wall shapes and impressed disturbances of arbitrary form. It is
shown that the shock wave is not planar and that its shape must be obtained
as part of an inner solution which involves a numerical solution of the non-
linear small disturbance transonic equation, the unknown shock shape form-
ing one of the boundaries of the region in question. It proves to be relatively
easy to use the method of integral relations to obtain approximate but very
useful solutions. The solutions allow one to calculate the shock shape and

velocity, as well as fluid velocity and thermodynamic property distributions,

as functions of time.
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Values of xy, 8,4, and AP for Various Times

TABLE 1

. ey

Y

t X ﬁzd APy
0 | -12.292 0

m/2 2.0 -25.708 0.1878
™ 1. - 8.883 -0.0477
3w/2 1.0 - 3,047 -0.1294




29

v
Flow direction i t—ﬁ

B RN ARERRe

7
R e s a sy sraseariy il

Figure 1. Sketch of asymmetric channel flow, showing
coordinate system.
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Figure 2. Isotachs corresponding to equation (15a) when 3, > (f,'")?/3;
yw=tl+ex?/2+€? 1420 (v+1)/9]x*/2, 8,=5/2, € =0.1.
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Figure 3. Isotachs corresponding to equation (15a) when

B; = ('F/3 = 1/3,
as in figure 2.

for same wall shapes and €
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Figure 4. Isotachs corresponding to equation (l15a) when 8, = ({,”)2/3 = LIS,
for same wall shapes and € as in figure 2.
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Figure 7. Variation of shock wave shape with time for channel walls
given by equation (43) and shock location as in equation (44).
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Figure 8, First order wall pressure distributions for various times for channel
walls given by equation (43) and shock location as in equation (44).

Y=1.4, €=0.1. —— calculated pressure distribution upstream of the
shock wave, jump across shock, and outer pressure distribution down-
stream of shock. @ pressures calculated in inner region. --- approxi-
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